Comparative analysis of Alu repeats in primate genomes

Genome Res. 2009 May;19(5):876-85. doi: 10.1101/gr.083972.108.


Using bacteria artificial chromosome (BAC) end sequences (16.9 Mb) and high-quality alignments of genomic sequences (17.4 Mb), we performed a global assessment of the divergence distributions, phylogenies, and consensus sequences for Alu elements in primates including lemur, marmoset, macaque, baboon, and chimpanzee as compared to human. We found that in lemurs, Alu elements show a broader and more symmetric sequence divergence distribution, suggesting a steady rate of Alu retrotransposition activity among prosimians. In contrast, Alu elements in anthropoids show a skewed distribution shifted toward more ancient elements with continual declining rates in recent Alu activity along the hominoid lineage of evolution. Using an integrated approach combining mutation profile and insertion/deletion analyses, we identified nine novel lineage-specific Alu subfamilies in lemur (seven), marmoset (one), and baboon/macaque (one) containing multiple diagnostic mutations distinct from their human counterparts-Alu J, S, and Y subfamilies, respectively. Among these primates, we show that that the lemur has the lowest density of Alu repeats (55 repeats/Mb), while marmoset has the greatest abundance (188 repeats/Mb). We estimate that approximately 70% of lemur and 16% of marmoset Alu elements belong to lineage-specific subfamilies. Our analysis has provided an evolutionary framework for further classification and refinement of the Alu repeat phylogeny. The differences in the distribution and rates of Alu activity have played an important role in subtly reshaping the structure of primate genomes. The functional consequences of these changes among the diverse primate lineages over such short periods of evolutionary time are an important area of future investigation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alu Elements / genetics*
  • Animals
  • Base Sequence
  • Evolution, Molecular
  • Genetic Variation
  • Genome*
  • Humans
  • Molecular Sequence Data
  • Phylogeny
  • Primates / genetics*
  • Sequence Alignment