Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap

J Biol Chem. 2009 Jun 26;284(26):17742-50. doi: 10.1074/jbc.M109.009001. Epub 2009 May 4.


The eukaryotic initiation factor 4F (eIF4F) is thought to be the first factor to bind mRNA during 7-methylguanosine (m7G) cap-dependent translation initiation. The multipartite eIF4F contains the cap-binding protein eIF4E, and it is assumed that eIF4F binds mRNAs primarily at the 5' m7G cap structure. We have analyzed equilibrium binding of rabbit eIF4F to a series of diverse RNAs and found no impact of the 5'-cap on the stability of eIF4F-RNA complexes. However, eIF4F preferentially and cooperatively binds to RNAs with a minimum length of approximately 60 nucleotides in vitro. Furthermore, translation activity in rabbit reticulocyte lysate is strongly inhibited by RNAs exceeding this length, but not by shorter ones, consistent with the notion that eIF4F in its physiological environment preferentially binds longer RNAs, too. Collectively, our results indicate that intrinsic RNA binding by eIF4F depends on a minimal RNA length, rather than on cap recognition. The nonetheless essential m7G cap may either function at steps subsequent to eIF4F-RNA binding, or other factors facilitate preferential binding of eIF4F to the m7G cap.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Eukaryotic Initiation Factor-4F / genetics
  • Eukaryotic Initiation Factor-4F / metabolism*
  • Humans
  • Protein Biosynthesis
  • RNA Caps / genetics
  • RNA Caps / metabolism*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • Rabbits
  • Reticulocytes


  • Eukaryotic Initiation Factor-4F
  • RNA Caps
  • RNA, Messenger