The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells

Mol Endocrinol. 2009 Aug;23(8):1215-30. doi: 10.1210/me.2009-0062. Epub 2009 May 7.

Abstract

Epidermal growth factor (EGF) receptor (EGFR)/MAPK signaling can induce a switch in MCF-7 breast cancer cells, from an estrogen receptor (ER)alpha-positive, Luminal-A phenotype, to an ERalpha-negative, Basal-like phenotype. Although mechanisms for this switch remain obscure, Basal-like cancers are typically high grade and confer a poorer clinical prognosis. We previously reported that miR-206 and ERalpha repress each other's expression in MCF-7 cells in a double-negative feedback loop. We show herein that miR-206 coordinately targets mRNAs encoding the coactivator proteins steroid receptor coactivator (SRC)-1 and SRC-3, and the transcription factor GATA-3, all of which contribute to estrogenic signaling and a Luminal-A phenotype. Overexpression of miR-206 repressed estrogen-mediated responses in MCF-7 cells, even in the presence of ERalpha encoded by an mRNA lacking a 3'-untranslated region, suggesting miR-206 affects estrogen signaling by targeting mRNAs encoding ERalpha-associated coregulatory proteins. Furthermore, EGF treatments enhanced miR-206 levels in MCF-7 cells and ERalpha-negative, EGFR-positive MDA-MB-231 cells, whereas EGFR small interfering RNA, or PD153035, an EGFR inhibitor, or U0126, a MAPK kinase inhibitor, significantly reduced miR-206 levels in MDA-MB-231 cells. Blocking EGF-induced enhancement of miR-206 with antagomiR-206 abrogated the EGF-inhibitory effect on ERalpha, SRC-1, and SRC-3 levels, and on estrogen response element-luciferase activity, indicating that EGFR signaling represses estrogenic responses in MCF-7 cells by enhancing miR-206 activity. Elevated miR-206 levels in MCF-7 cells ultimately resulted in reduced cell proliferation, enhanced apoptosis, and reduced expression of multiple estrogen-responsive genes. In conclusion, miR-206 contributes to EGFR-mediated abrogation of estrogenic responses in MCF-7 cells, contributes to a Luminal-A- to Basal-like phenotypic switch, and may be a measure of EGFR response within Basal-like breast tumors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / metabolism*
  • Cell Line, Tumor
  • Cell Proliferation
  • Epidermal Growth Factor / metabolism*
  • Estrogen Receptor alpha / metabolism*
  • Humans
  • In Situ Nick-End Labeling
  • MicroRNAs / genetics*
  • MicroRNAs / physiology
  • Models, Biological
  • Models, Genetic
  • Open Reading Frames
  • Phenotype
  • Polymerase Chain Reaction
  • Signal Transduction
  • Trypan Blue / pharmacology

Substances

  • Estrogen Receptor alpha
  • MIRN206 microRNA, human
  • MicroRNAs
  • Epidermal Growth Factor
  • Trypan Blue