Purpose: We present a systematic approach for studying positron emission tomography-computed tomography (PET/CT) 3-D virtual fly-through endoscopy and for assessing the accuracy of this technology for visualizing and detecting endobronchial lesions as a function of focal lesion morphology and activity.
Procedures: Capsules designed to simulate endobronchial lesions were filled with activity and introduced into a porcine lung-heart phantom. PET/CT images were acquired, reconstructed, and volume rendered as 3-D fly-through and fly-around visualizations. Anatomical positioning of lesions seen on the 3-D-volume-rendered PET/CT images was compared to the actual position of the capsules.
Results: Lesion size was observed to be highly sensitive to PET threshold parameter settings and careful opacity and color transfer function parameter assignment.
Conclusion: We have demonstrated a phantom model for studies of PET/CT 3-D virtual fly-through bronchoscopy and have applied this model for understanding the effect of PET thresholding on the visualization and detection of lesions.