Vitamin D and aging

J Steroid Biochem Mol Biol. 2009 Mar;114(1-2):78-84. doi: 10.1016/j.jsbmb.2008.12.020.

Abstract

Recent studies using genetically modified mice, such as FGF23-/- and Klotho-/- mice that exhibit altered mineral homeostasis due to a high vitamin D activity showed features of premature aging that include retarded growth, osteoporosis, atherosclerosis, ectopic calcification, immunological deficiency, skin and general organ atrophy, hypogonadism and short lifespan. The phenotype reversed by normalizing vitamin D and/or mineral homeostasis. Thus, hypervitaminosis D due to an increased 1alpha-hydroxylase activity seems to be a cause of the premature aging. In several studies, we have described that a complete or partial lack of vitamin D action (VDR-/- mice and CYP27B1-/-) show almost similar phenotype as FGF23-/- or Klotho-/- mice. VDR mutant mice have growth retardation, osteoporosis, kyphosis, skin thickening and wrinkling, alopecia, ectopic calcification, progressive loss of hearing and balance as well as short lifespan. CYP27B1-/- mice do not show alopecia nor balance deficit, which might be apoVDR-dependent or calcidiol-dependent. The features are typical to premature aging. The phenotype is resistant to a normalization of the mineral homeostasis by a rescue diet containing high calcium and phosphate. Taken together, aging shows a U-shaped dependency on hormonal forms of vitamin D suggesting that there is an optimal concentration of vitamin D in delaying aging phenomena. Our recent study shows that calcidiol is an active hormone. Since serum calcidiol but not calcitriol is fluctuating in physiological situations, calcidiol might determine the biological output of vitamin D action. Due to its high serum concentration and better uptake of calcidiol-DBP by the target cells through the cubilin-megalin system, calcidiol seems to be an important circulating hormone. Therefore, serum calcidiol might be associated with an increased risk of aging-related chronic diseases more directly than calcitriol. Aging and cancer seem to be tightly associated phenomena. Accumulation of damage on DNA and telomeres cause both aging and cancer, moreover the signalling pathways seem to converge on tumour suppressor protein, p53, which seems to be regulated by vitamin D. Also, the insulin-like growth factor signalling pathway (IGF-1, IGFBPs, IGFR) and fibroblast growth factor-23 (FGF-23) regulate growth, aging and cancer. Vitamin D can regulate these signalling pathways, too. Also NF-kappaB and telomerase reverse transcriptase (TERT) might be molecular mechanisms mediating vitamin D action in aging and cancer. Calcidiol serum concentrations show a U-shaped risk of prostate cancer suggesting an optimal serum concentration of 40-60 nmol/L for the lowest cancer risk. Therefore, it is necessary to study several common aging-associated diseases such as osteoporosis, hypertension and diabetes known to be vitamin D-dependent before any recommendations of an optimal serum concentration of calcidiol are given.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / physiology*
  • Aging, Premature / metabolism*
  • Animals
  • Calcifediol / metabolism*
  • Calcitriol / metabolism
  • Fibroblast Growth Factor-23
  • Fibroblast Growth Factors / genetics
  • Fibroblast Growth Factors / metabolism
  • Glucuronidase / genetics
  • Glucuronidase / metabolism
  • Humans
  • Klotho Proteins
  • Neoplasms / metabolism*
  • Nutrition Disorders / metabolism
  • Vitamin D / metabolism*
  • Vitamin D Deficiency / metabolism

Substances

  • FGF23 protein, human
  • Fgf23 protein, mouse
  • Vitamin D
  • Fibroblast Growth Factors
  • Fibroblast Growth Factor-23
  • Glucuronidase
  • Klotho Proteins
  • Calcitriol
  • Calcifediol