Genetic modification of flux for flux prediction of mutants

Bioinformatics. 2009 Jul 1;25(13):1702-8. doi: 10.1093/bioinformatics/btp298. Epub 2009 May 25.


Motivation: Gene deletion and overexpression are critical technologies for designing or improving the metabolic flux distribution of microbes. Some algorithms including flux balance analysis (FBA) and minimization of metabolic adjustment (MOMA) predict a flux distribution from a stoichiometric matrix in the mutants in which some metabolic genes are deleted or non-functional, but there are few algorithms that predict how a broad range of genetic modifications, such as over- and underexpression of metabolic genes, alters the phenotypes of the mutants at the metabolic flux level.

Results: To overcome such existing limitations, we develop a novel algorithm that predicts the flux distribution of the mutants with a broad range of genetic modification, based on elementary mode analysis. It is denoted as genetic modification of flux (GMF), which couples two algorithms that we have developed: modified control effective flux (mCEF) and enzyme control flux (ECF). mCEF is proposed based on CEF to estimate the gene expression patterns in genetically modified mutants in terms of specific biological functions. GMF is demonstrated to predict the flux distribution of not only gene deletion mutants, but also the mutants with underexpressed and overexpressed genes in Escherichia coli and Corynebacterium glutamicum. This achieves breakthrough in the a priori flux prediction of a broad range of genetically modified mutants.

Supplementary information: Supplementary file and programs are available at Bioinformatics online or

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Corynebacterium glutamicum / genetics
  • Corynebacterium glutamicum / metabolism
  • Databases, Protein
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression Regulation, Bacterial
  • Mutation*