Essential role for a long-term depression mechanism in ocular dominance plasticity
- PMID: 19470483
- PMCID: PMC2685742
- DOI: 10.1073/pnas.0901305106
Essential role for a long-term depression mechanism in ocular dominance plasticity
Abstract
The classic example of experience-dependent cortical plasticity is the ocular dominance (OD) shift in visual cortex after monocular deprivation (MD). The experimental model of homosynaptic long-term depression (LTD) was originally introduced to study the mechanisms that could account for deprivation-induced loss of visual responsiveness. One established LTD mechanism is a loss of sensitivity to the neurotransmitter glutamate caused by internalization of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Although it has been shown that MD similarly causes a loss of AMPARs from visual cortical synapses, the contribution of this change to the OD shift has not been established. Using an herpes simplex virus (HSV) vector, we expressed in visual cortical neurons a peptide (G2CT) designed to block AMPAR internalization by hindering the association of the C-terminal tail of the AMPAR GluR2 subunit with the AP2 clathrin adaptor complex. We found that G2CT expression interferes with NMDA receptor (NMDAR)-dependent AMPAR endocytosis and LTD, without affecting baseline synaptic transmission. When expressed in vivo, G2CT completely blocked the OD shift and depression of deprived-eye responses after MD without affecting baseline visual responsiveness or experience-dependent response potentiation in layer 4 of visual cortex. These data suggest that AMPAR internalization is essential for the loss of synaptic strength caused by sensory deprivation in visual cortex.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.Eur J Neurosci. 2008 Aug;28(4):730-43. doi: 10.1111/j.1460-9568.2008.06384.x. Epub 2008 Jul 24. Eur J Neurosci. 2008. PMID: 18657180
-
Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.Nat Neurosci. 2003 Aug;6(8):854-62. doi: 10.1038/nn1100. Nat Neurosci. 2003. PMID: 12886226
-
Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex.Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):357-67. doi: 10.1098/rstb.2008.0198. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 18977732 Free PMC article. Review.
-
The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.J Neurosci. 2013 Sep 18;33(38):15220-5. doi: 10.1523/JNEUROSCI.2078-13.2013. J Neurosci. 2013. PMID: 24048851 Free PMC article.
-
Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.J Neurosci. 1998 Mar 15;18(6):2108-17. doi: 10.1523/JNEUROSCI.18-06-02108.1998. J Neurosci. 1998. PMID: 9482797 Free PMC article. Review.
Cited by
-
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex.J Neurosci. 2012 Aug 1;32(31):10562-73. doi: 10.1523/JNEUROSCI.0622-12.2012. J Neurosci. 2012. PMID: 22855806 Free PMC article.
-
Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity.Cereb Cortex. 2020 Apr 14;30(4):2555-2572. doi: 10.1093/cercor/bhz260. Cereb Cortex. 2020. PMID: 31832634 Free PMC article.
-
Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits.Front Neural Circuits. 2021 Dec 7;15:803401. doi: 10.3389/fncir.2021.803401. eCollection 2021. Front Neural Circuits. 2021. PMID: 34949992 Free PMC article. Review.
-
Experience-dependent plasticity acts via GluR1 and a novel neuronal nitric oxide synthase-dependent synaptic mechanism in adult cortex.J Neurosci. 2011 Aug 3;31(31):11220-30. doi: 10.1523/JNEUROSCI.1590-11.2011. J Neurosci. 2011. PMID: 21813683 Free PMC article.
-
Temporally coherent visual stimuli boost ocular dominance plasticity.J Neurosci. 2013 Jul 17;33(29):11774-8. doi: 10.1523/JNEUROSCI.4262-12.2013. J Neurosci. 2013. PMID: 23864666 Free PMC article.
References
-
- Bear MF, Cooper LN, Ebner FF. A physiological basis for a theory of synapse modification. Science. 1987;237:42–48. - PubMed
-
- Malenka RC, Bear MF. LTP and LTD: An embarrassment of riches. Neuron. 2004;44:5–21. - PubMed
-
- Feldman DE, Nicoll RA, Malenka RC, Isaac JT. Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron. 1998;21:347–357. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
