Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;249(6):1032-9.
doi: 10.1097/SLA.0b013e3181a38f28.

TMPM-ICD9: a trauma mortality prediction model based on ICD-9-CM codes

Affiliations

TMPM-ICD9: a trauma mortality prediction model based on ICD-9-CM codes

Laurent G Glance et al. Ann Surg. 2009 Jun.

Abstract

Objective: To develop and validate a new ICD-9 injury model that uses regression modeling, as opposed to a simple ratio measurement, to estimate empiric injury severities for each of the injuries in the ICD-9-CM lexicon.

Background: The American College of Surgeons now requires International Classification of diseases ninth Edition (ICD-9-CM) codes for injury coding in the National Trauma Databank. International Classification of diseases ninth Edition Injury Severity Score (ICISS) is the best-known risk-adjustment model when injuries are recorded using ICD-9-CM coding, and would likely be used to risk-adjust outcome measures for hospital trauma report cards. ICISS, however, has been criticized for its poor calibration.

Methods: We developed and validated a new ICD-9 injury model using data on 749,374 patients admitted to 359 hospitals in the National Trauma Databank (version 7.0). Empiric measures of injury severity for each of the trauma ICD-9-CM codes were estimated using a regression-based approach, and then used as the basis for a new Trauma Mortality Prediction Model (TMPM-ICD9). ICISS and the Single-Worst Injury (SWI) model were also re-estimated. The performance of each of these models was compared using the area under the receiver operating characteristic (ROC), the Hosmer-Lemeshow statistic, and the Akaike information criterion statistic.

Results: TMPM-ICD9 exhibits significantly better discrimination (ROCTMPM = 0.880 [0.876-0.883]; ROCICISS = 0.850 [0.846-0.855]; ROCSWI = 0.862 [0.858-0.867]) and calibration (HLTMPM = 29.3 [12.1-44.1]; HLICISS = 231 [176-279]; HLSWI = 462 [380-548]) compared with both ICISS and the Single Worst Injury model. All models were improved with the addition of age, gender, and mechanism of injury, but TMPM-ICD9 continued to demonstrate superior model performance.

Conclusions: Because TMPM-ICD9 uniformly out-performs ICISS and the SWI model, it should be used in preference to ICISS for risk-adjusting trauma outcomes when injuries are recorded using ICD9-CM codes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources