Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria
- PMID: 19474814
- PMCID: PMC2749086
- DOI: 10.1038/ismej.2009.58
Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria
Abstract
Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and Salinispora arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with earlier evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in clustered regularly interspaced short palindromic repeat sequences suggest that S. arenicola may possess a higher level of phage immunity, whereas a highly duplicated family of polymorphic membrane proteins provides evidence for a new mechanism of marine adaptation in Gram-positive bacteria.
Figures
Similar articles
-
Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora.Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):E1130-9. doi: 10.1073/pnas.1324161111. Epub 2014 Mar 10. Proc Natl Acad Sci U S A. 2014. PMID: 24616526 Free PMC article.
-
Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria.Appl Environ Microbiol. 2010 Apr;76(8):2487-99. doi: 10.1128/AEM.02852-09. Epub 2010 Feb 12. Appl Environ Microbiol. 2010. PMID: 20154113 Free PMC article.
-
Comparative genomics reveals evidence of marine adaptation in Salinispora species.BMC Genomics. 2012 Mar 8;13:86. doi: 10.1186/1471-2164-13-86. BMC Genomics. 2012. PMID: 22401625 Free PMC article.
-
Natural Products and the Gene Cluster Revolution.Trends Microbiol. 2016 Dec;24(12):968-977. doi: 10.1016/j.tim.2016.07.006. Epub 2016 Aug 1. Trends Microbiol. 2016. PMID: 27491886 Free PMC article. Review.
-
Gene Flow and Molecular Innovation in Bacteria.Curr Biol. 2016 Sep 26;26(18):R859-R864. doi: 10.1016/j.cub.2016.08.004. Curr Biol. 2016. PMID: 27676308 Free PMC article. Review.
Cited by
-
Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions.ISME Commun. 2022 Mar 30;2(1):32. doi: 10.1038/s43705-022-00113-8. ISME Commun. 2022. PMID: 37938300 Free PMC article.
-
Evolutionary pathways for deep-sea adaptation in marine planktonic Actinobacteriota.Front Microbiol. 2023 May 10;14:1159270. doi: 10.3389/fmicb.2023.1159270. eCollection 2023. Front Microbiol. 2023. PMID: 37234526 Free PMC article.
-
Synergy between Genome Mining, Metabolomics, and Bioinformatics Uncovers Antibacterial Chlorinated Carbazole Alkaloids and Their Biosynthetic Gene Cluster from Streptomyces tubbatahanensis sp. nov., a Novel Actinomycete Isolated from Sulu Sea, Philippines.Microbiol Spectr. 2023 Feb 21;11(2):e0366122. doi: 10.1128/spectrum.03661-22. Online ahead of print. Microbiol Spectr. 2023. PMID: 36809153 Free PMC article.
-
Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes.Cell Genom. 2022 Nov 11;2(12):100213. doi: 10.1016/j.xgen.2022.100213. eCollection 2022 Dec 14. Cell Genom. 2022. PMID: 36778052 Free PMC article.
-
Toxic/Bioactive Peptide Synthesis Genes Rearranged by Insertion Sequence Elements Among the Bloom-Forming Cyanobacteria Planktothrix.Front Microbiol. 2022 Jul 28;13:901762. doi: 10.3389/fmicb.2022.901762. eCollection 2022. Front Microbiol. 2022. PMID: 35966708 Free PMC article.
References
-
- Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–440. - PubMed
-
- Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nat. 2004;430:551–554. - PubMed
-
- Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, et al. The calicheamicin gene cluster and its iterative type I enediyne PKS. Sci. 2002;297:1173–1176. - PubMed
-
- Badger JH, Eisen JA, Ward NL. Genomic analysis of Hyphomonas neptunium contradicts 16S rRNA gene-based phylogenetic analysis: implications for the taxonomy of the orders ‘Rhodobacterales’ and Caulobacterales. Int J Syst Evol Microbiol. 2005;55:1021–1026. - PubMed
-
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Sci. 2007;315:1709–1712. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
