Objective: To analyze the frequency, surface phenotype, and cytokine secretion of CD4+ T cells in peripheral blood mononuclear cells (PBMCs) from patients with ankylosing spondylitis (AS) compared with both healthy control subjects and patients with rheumatoid arthritis (RA).
Methods: Eight-color flow cytometry was used to analyze the surface phenotype and cytokine production of PBMCs from 20 patients with AS, 12 patients with RA, and 16 healthy control subjects, following stimulation ex vivo with phorbol myristate acetate and ionomycin for 5 hours. Secretion of interleukin-17 (IL-17) by PBMCs was measured by enzyme-linked immunosorbent assay, following stimulation with anti-CD3/CD28 for 4 days.
Results: The percentages of IL-17-positive CD4+ T cells and IL-22-positive CD4+ T cells were increased in the PBMCs of both patients with AS and patients with RA compared with healthy control subjects, whereas there were no differences in the percentages of interferon-gamma (IFNgamma)-positive or IL-10-positive CD4+ T cells. Likewise, concentrations of IL-17 in supernatants from patients with AS were significantly higher compared with those from healthy control subjects. In patients with RA, the concentrations of IL-17 were increased but not significantly. There was a correlation between the percentages of IL-17-positive CD4+ T cells detected in PBMCs and the amounts of IL-17 in culture supernatants (r=0.414, P=0.0034). All IL-17-producing cells were CD4+CD45RO+; most expressed both CCR6 and CCR4, but only 50% expressed the IL-23 receptor (IL-23R). Nevertheless, there was a positive relationship between the percentage of IL-23R-positive CD4+ T cells and the frequency of IL-17-positive CD4+ T cells or IL-22-positive CD4+ T cells (r=0.57, P<0.0001 and r=0.46, P=0.001, respectively). A significant proportion of cells that produced IL-17 also produced IL-22 and IFNgamma, but none produced IL-10.
Conclusion: The frequencies of IL-17-positive and IL-22-positive CD4+ T cells were increased in PBMCs from patients with AS and patients with RA, resulting in secretion of higher quantities of IL-17 by PBMCs following stimulation. These data support the hypothesis that Th17 cells, particularly when present in excess of IL-10-producing cells, are involved in the pathogenesis of inflammatory arthritis.