Iliotibial band tension affects patellofemoral and tibiofemoral kinematics

J Biomech. 2009 Jul 22;42(10):1539-1546. doi: 10.1016/j.jbiomech.2009.03.041. Epub 2009 May 28.


The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100 degrees to 0 degrees flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7 degrees, 1.2 degrees and 1.5 degrees for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60 degrees and 75 degrees flexion. The increase was 5.2 degrees, 9.5 degrees and 13 degrees in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomechanical Phenomena
  • Fascia / physiology
  • Female
  • Femur / physiology
  • Humans
  • Ilium / physiology
  • In Vitro Techniques
  • Knee Joint / physiology*
  • Male
  • Middle Aged
  • Patella / physiology
  • Rotation
  • Stress, Mechanical
  • Tibia / physiology