Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice

Neuroscience. 2009 Sep 29;163(1):55-72. doi: 10.1016/j.neuroscience.2009.05.071. Epub 2009 Jun 14.


Granulocyte colony stimulating factor (G-CSF) is a multi-modal hematopoietic growth factor, which also has profound effects on the diseased CNS. G-CSF has been shown to enhance recovery from neurologic deficits in rodent models of ischemia. G-CSF appears to facilitate neuroplastic changes by both mobilization of bone marrow-derived cells and by its direct actions on CNS cells. The overall objective of the study was to determine if G-CSF administration in a mouse model of Alzheimer's disease (AD) (Tg APP/PS1) would impact hippocampal-dependent learning by modifying the underlying disease pathology. A course of s.c. administration of G-CSF for a period of less than three weeks significantly improved cognitive performance, decreased beta-amyloid deposition in hippocampus and entorhinal cortex and augmented total microglial activity. Additionally, G-CSF reduced systemic inflammation indicated by suppression of the production or activity of major pro-inflammatory cytokines in plasma. Improved cognition in AD mice was associated with increased synaptophysin immunostaining in hippocampal CA1 and CA3 regions and augmented neurogenesis, evidenced by increased numbers of calretinin-expressing cells in dentate gyrus. Given that G-CSF is already utilized clinically to safely stimulate hematopoietic stem cell production, these basic research findings will be readily translated into clinical trials to reverse or forestall the progression of dementia in AD. The primary objective of the present study was to determine whether a short course of G-CSF administration would have an impact on the pathological hallmark of AD, the age-dependent accumulation of A beta deposits, in a transgenic mouse model of AD (APP+ PS1; Tg). A second objective was to determine whether such treatment would impact cognitive performance in a hippocampal-dependent memory paradigm. To explain the G-CSF triggered amyloid reduction and associated reversal of cognitive impairment, several mechanisms of action were explored. (1) G-CSF was hypothesized to increase activation of resident microglia and to increase mobilization of marrow-derived microglia. The effect of G-CSF on microglial activation was examined by quantitative measurements of total microglial burden. To determine if G-CSF increased trafficking of marrow-derived microglia into brain, bone marrow-derived green fluorescent protein-expressing (GFP+) microglia were visualized in the brains of chimeric AD mice. (2) To assess the role of immune-modulation in mediating G-CSF effects, a panel of cytokines was measured in both plasma and brain. (3) To test the hypothesis that reduction of A beta deposits can affect synaptic area, quantitative measurement of synaptophysin immunoreactivity in hippocampal CA1 and CA3 sectors was undertaken. (4) To learn whether enhanced hippocampal neurogenesis was induced by G-CSF treatment, numbers of calretinin-expressing cells were determined in dentate gyrus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / drug therapy*
  • Alzheimer Disease / metabolism
  • Alzheimer Disease / physiopathology
  • Animals
  • Calbindin 2
  • Cell Movement / drug effects
  • Cell Movement / immunology
  • Cognition Disorders / drug therapy*
  • Cognition Disorders / metabolism
  • Cognition Disorders / physiopathology
  • Cytokines / drug effects
  • Cytokines / metabolism
  • Dentate Gyrus / drug effects
  • Dentate Gyrus / metabolism
  • Disease Models, Animal
  • Encephalitis / drug therapy
  • Encephalitis / metabolism
  • Encephalitis / physiopathology
  • Entorhinal Cortex / drug effects
  • Entorhinal Cortex / metabolism
  • Entorhinal Cortex / physiopathology
  • Granulocyte-Macrophage Colony-Stimulating Factor / pharmacology
  • Granulocyte-Macrophage Colony-Stimulating Factor / therapeutic use*
  • Green Fluorescent Proteins / metabolism
  • Hippocampus / drug effects*
  • Hippocampus / metabolism
  • Hippocampus / physiopathology
  • Humans
  • Mice
  • Mice, Transgenic
  • Microglia / drug effects
  • Microglia / physiology
  • Neurogenesis / drug effects*
  • Neurogenesis / physiology
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use
  • Plaque, Amyloid / drug effects*
  • Plaque, Amyloid / metabolism
  • S100 Calcium Binding Protein G / drug effects
  • S100 Calcium Binding Protein G / metabolism
  • Synaptophysin / drug effects
  • Synaptophysin / metabolism


  • CALB2 protein, human
  • Calb2 protein, mouse
  • Calbindin 2
  • Cytokines
  • Neuroprotective Agents
  • S100 Calcium Binding Protein G
  • Synaptophysin
  • Green Fluorescent Proteins
  • Granulocyte-Macrophage Colony-Stimulating Factor