Optical MEMS pressure sensor based on Fabry-Perot interferometry

Opt Express. 2006 Feb 20;14(4):1497-504. doi: 10.1364/oe.14.001497.

Abstract

By employing the surface and bulk micro-electro-mechanical system (MEMS) techniques, we design and demonstrate a simple and miniature optical Fabry-Perot interferometric pressure sensor, where the loaded pressure is gauged by measuring the spectrum shift of the reflected optical signal. From the simulation results based on a multiple cavities interference model, we find that the response range and sensitivity of this pressure sensor can be simply altered by adjusting the size of sensing area. The experimental results show that high linear response in the range of 0.2-1.0 Mpa and a reasonable sensitivity of 10.07 nm/MPa (spectrum shift/pressure) have been obtained for this sensor.