Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens

Syst Appl Microbiol. 2009 Aug;32(5):314-22. doi: 10.1016/j.syapm.2009.05.003. Epub 2009 Jun 9.


The Streptomyces albidoflavus 16S rRNA gene clade contains 10 species and subspecies with identical 16S rRNA gene sequences and very similar numerical taxonomic data, including Streptomyces griseus subsp. solvifaciens. Type strains of this clade, as well as three CGMCC strains which were received as Streptomyces galilaeus, Streptomyces sioyaensis and Streptomyces vinaceus, respectively, that shared the same 16S rRNA gene sequences with the clade, were subjected to multilocus sequence analysis (MLSA), DNA-DNA hybridization (DDH) and phenotypic characterization for a comprehensive reevaluation. The 13 strains still formed a distinct, albeit loosely related, clade in the phylogenetic tree based on concatenated sequences of aptD, gyrB, recA, rpoB and trpB genes, supported by a high bootstrap value and different tree-making algorithms, with MLSA evolutionary distances ranging from 0 to 0.003. DDH values among these strains were well above the 70% cut-off point for species delineation. Based on the genotypic data of MLSA and DDH, combined with key phenotypic properties in common, it is proposed that the 10 species and subspecies of the S. albidoflavus clade, namely S. albidoflavus, S. canescens, S. champavatii, S. coelicolor, S. felleus, S. globisporus subsp. caucasicus, S. griseus subsp. solvifaciens, S. limosus, S. odorifer and S. sampsonii, should be merged into a single genomic species, for which the name S. albidoflavus is retained, and that the three strains S. galilaeus CGMCC 4.1320, S. sioyaensis CGMCC 4.1306 and S. vinaceus CGMCC 4.1305 should be assigned to S. albidoflavus as well. The results also indicated that MLSA could be the procedure of choice for distinguishing between species within Streptomyces 16S rRNA gene clades.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Cluster Analysis
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Molecular Sequence Data
  • Nucleic Acid Hybridization
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Streptomyces / classification*
  • Streptomyces / genetics*


  • Bacterial Proteins
  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Ribosomal, 16S