Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer

Breast Cancer Res. 2009;11(3):R36. doi: 10.1186/bcr2321. Epub 2009 Jun 16.

Abstract

Introduction: We have shown previously that treatment with pegylated leptin peptide receptor antagonist 2 (PEG-LPrA2) reduced the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor type 2 (VEGFR2) and growth of 4T1-breast cancer (BC) in syngeneic mice. In this investigation, PEG-LPrA2 was used to evaluate whether the inhibition of leptin signaling has differential impact on the expression of pro-angiogenic and pro-proliferative molecules and growth of human estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) BC xenografts hosted by immunodeficient mice.

Methods: To test the contribution of leptin signaling to BC growth and expression of leptin-targeted molecules, PEG-LPrA2 treatment was applied to severe immunodeficient mice hosting established ER+ (MCF-7 cells; ovariectomized/supplemented with estradiol) and ER- (MDA-MB231 cells) BC xenografts. To further assess leptin and PEG-LPrA2 effects on ER+ and ER- BC, the expression of VEGF and VEGFR2 (protein and mRNA) was investigated in cell cultures.

Results: PEG-LPrA2 more effectively reduced the growth of ER+ (>40-fold) than ER- BC (twofold) and expression of pro-angiogenic (VEGF/VEGFR2, leptin/leptin receptor OB-R, and IL-1 receptor type I) and pro-proliferative molecules (proliferating cell nuclear antigen and cyclin D1) in ER+ than in ER- BC. Mouse tumor stroma in ER+ BC expressed high levels of VEGF and leptin that was induced by leptin signaling. Leptin upregulated the transcriptional expression of VEGF/VEGFR2 in MCF-7 and MDA-MB231 cells.

Conclusions: These results suggest that leptin signaling plays an important role in the growth of both ER+ and ER- BC that is associated with the leptin regulation of pro-angiogenic and pro-proliferative molecules. These data provide support for the potential use of leptin-signaling inhibition as a novel treatment for ER+ and ER- BC.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism*
  • Cell Line, Tumor
  • Female
  • Humans
  • Leptin / chemistry
  • Leptin / metabolism*
  • Mammary Neoplasms, Experimental / drug therapy
  • Mice
  • Mice, SCID
  • Neoplasm Transplantation
  • Polyethylene Glycols / metabolism
  • Receptors, Estrogen / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction

Substances

  • Antineoplastic Agents
  • Leptin
  • Receptors, Estrogen
  • Polyethylene Glycols