Optical antenna arrays in the visible range

Opt Express. 2007 Mar 19;15(6):3478-87. doi: 10.1364/oe.15.003478.

Abstract

We report on experimental observations of highly collimated beams of radiation generated when a periodic sub-wavelength grating interacts with surface bound plasmon-polariton modes of a thin gold film. We find that the radiation process can be fully described in terms of interference of emission from a dipole antenna array and modeling the structure in this way enables the far-field radiation pattern to be predicted. The directionality, multiplicity and divergence of the beams can be completely described within this framework. Essential to the process are the surface plasmon excitations: these are the driving mechanism behind the beam formation, phase-coupling radiation from the periodic surface structure and thus imposing a spatial coherence. Detailed fitting of the experimental and modeled data indicates the presence of scattering events involving the interaction of two surface plasmon polariton modes.