Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3

Cell Signal. 2009 Dec;21(12):1717-26. doi: 10.1016/j.cellsig.2009.06.002. Epub 2009 Jun 18.


Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / genetics
  • Proto-Oncogene Proteins c-kit / antagonists & inhibitors
  • Proto-Oncogene Proteins c-kit / genetics
  • Proto-Oncogene Proteins c-kit / metabolism*
  • Signal Transduction* / drug effects
  • fms-Like Tyrosine Kinase 3 / antagonists & inhibitors
  • fms-Like Tyrosine Kinase 3 / genetics
  • fms-Like Tyrosine Kinase 3 / metabolism*


  • FLT3 protein, human
  • Proto-Oncogene Proteins c-kit
  • fms-Like Tyrosine Kinase 3