FGLamide Allatostatin genes in Arthropoda: introns early or late?

Peptides. 2009 Jul;30(7):1241-8. doi: 10.1016/j.peptides.2009.04.001.

Abstract

FGLamide allatostatins are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders and also show myomodulatory activity. The FGLamide allatostatin (AST) gene structure in Dictyoptera is intronless within the ORF, whereas in 9 species of Diptera, the FGLamide AST ORF has one intron. To investigate the evolutionary history of AST intron structure, (intron early versus intron late hypothesis), all available Arthropoda FGLamide AST gene sequences were examined from genome databases with reference to intron presence and position/phase. Three types of FGLamide AST ORF organization were found: intronless in I. scapularis and P. humanus corporis; one intron in D. pulex, A. pisum, A. mellifera and five Drosophila sp.; two introns in N. vitripennis, B. mori strains, A. aegypti, A. gambiae and C. quinquefasciatus. The literature suggests that for the majority of genes examined, most introns exist between codons (phase 0) which may reflect an ancient function of introns to separate protein modules. 60% of the FGLamide AST ORFs introns were between the first and second base within a codon (phase 1), 28% were between the second and third nucleotides within a codon (phase two) and 12% were phase 0. As would be required for correct intron splicing consensus sequence, 84% of introns were in codons starting with guanine. The positioning of introns was a maximum of 9 codons from a dibasic cleavage site. Our results suggest that the introns in the analyzed species support the intron late model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthropods / genetics*
  • Introns / genetics*
  • Neuropeptides / genetics*
  • Open Reading Frames / genetics
  • Phylogeny

Substances

  • Neuropeptides
  • allatostatin