Regression and persistence: remodelling in a tissue engineered axial vascular assembly

J Cell Mol Med. 2009 Oct;13(10):4166-75. doi: 10.1111/j.1582-4934.2009.00828.x. Epub 2009 Jun 23.


In later stages of vasculoangiogenesis a vascular network is going through a metamorphosis for optimal perfusion and economy of energy. In this study we make a quantitative approach to phenomena of remodelling in a bioartificial neovascular network and suggest variance of calibre as a parameter of neovascular maturation. For this study, 18 male Lewis rats were subjected to the AV loop operation in combination with a hard porous biogenic matrix and an isolation chamber. The animals were allocated into three groups for different explantation intervals set to 2, 4 and 8 weeks, respectively. Collective attributes like vascular density, percent fractional area and variance of calibre were evaluated for a predefined region of interest (ROI). Late morphogenesis was evaluated by means of scanning electron microscopy. After the fourth week the absolute number of vessels within the ROI decreased (P < 0.03) whereas, on the contrary, the fractional area of all segments increased (P < 0.02). The variance in calibre was significantly increased in the 8-week group (P < 0.05). Lymphatic growth after week 4, early pericyte migration as well as intussusceptive angiogenesis were identified immunohistologically. Phenomena of remodelling were evaluated quantitatively in a neovascular network and variance could be proposed as a parameter of net vascular maturation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Vessel Prosthesis*
  • Blood Vessels / anatomy & histology
  • Blood Vessels / physiology*
  • Blood Vessels / ultrastructure
  • Corrosion Casting
  • Male
  • Rats
  • Tissue Engineering / methods*
  • Vascular Patency / physiology