Pulmonary embolism (PE) can only be diagnosed with imaging techniques, which in practice is performed using ventilation/perfusion scintigraphy (V/P(SCAN)) or multidetector computed tomography of the pulmonary arteries (MDCT). The epidemiology, natural history, pathophysiology and clinical presentation of PE are briefly reviewed. The primary objective of Part 1 of the Task Group's report was to develop a methodological approach to and interpretation criteria for PE. The basic principle for the diagnosis of PE based upon V/P(SCAN) is to recognize lung segments or subsegments without perfusion but preserved ventilation, i.e. mismatch. Ventilation studies are in general performed after inhalation of Krypton or technetium-labelled aerosol of diethylene triamine pentaacetic acid (DTPA) or Technegas. Perfusion studies are performed after intravenous injection of macroaggregated human albumin. Radiation exposure using documented isotope doses is 1.2-2 mSv. Planar and tomographic techniques (V/P(PLANAR) and V/P(SPECT)) are analysed. V/P(SPECT) has higher sensitivity and specificity than V/P(PLANAR). The interpretation of either V/P(PLANAR) or V/P(SPECT) should follow holistic principles rather than obsolete probabilistic rules. PE should be reported when mismatch of more than one subsegment is found. For the diagnosis of chronic PE, V/P(SCAN) is of value. The additional diagnostic yield from V/P(SCAN) includes chronic obstructive lung disease (COPD), heart failure and pneumonia. Pitfalls in V/P(SCAN) interpretation are considered. V/P(SPECT) is strongly preferred to V/P(PLANAR) as the former permits the accurate diagnosis of PE even in the presence of comorbid diseases such as COPD and pneumonia. Technegas is preferred to DTPA in patients with COPD.