The complexity of the GABAA receptor shapes unique pharmacological profiles

Drug Discov Today. 2009 Sep;14(17-18):866-75. doi: 10.1016/j.drudis.2009.06.009. Epub 2009 Jul 2.


Gamma-amino butyric acid (GABA) is the most abundant inhibitory neurotransmitter in the central nervous system (CNS) and many physiological actions are modulated by GABA(A) receptors. These chloride channels can be opened by GABA and are a target for a variety of important drugs such as benzodiazepines, barbiturates, neuroactive steroids, convulsants and anaesthetics. GABA(A) receptors are involved in anxiety, feeding and drinking behaviour, circadian rhythm, cognition, vigilance, and learning and memory. Moreover, deficits in the functional expression of GABA(A) receptors have been implicated in multiple neurological and psychiatric diseases. This review aims to discuss the unique physiological and pharmacological properties of the multitude of GABA(A) receptor subtypes present in the CNS, making this receptor an important target for novel rational drug therapy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Benzodiazepines / pharmacology
  • Binding Sites / drug effects*
  • Brain / metabolism
  • Drug Delivery Systems*
  • Drug Discovery
  • Humans
  • Mice
  • Mice, Transgenic
  • Models, Biological
  • Receptors, GABA-A* / chemistry
  • Receptors, GABA-A* / drug effects
  • Receptors, GABA-A* / genetics
  • Receptors, GABA-A* / metabolism
  • gamma-Aminobutyric Acid / metabolism


  • Receptors, GABA-A
  • Benzodiazepines
  • gamma-Aminobutyric Acid