Continuous EEG monitoring: is it ready for prime time?

Curr Opin Crit Care. 2009 Apr;15(2):99-109. doi: 10.1097/MCC.0b013e3283294947.


Purpose of review: Continuous electroencephalography (cEEG) is being used more frequently in intensive care units to detect epileptic activity and ischemia. This review analyzes clinical applications and limitations of cEEG as a routine neuromonitoring tool.

Recent findings: cEEG is primarily used to detect nonconvulsive seizures, which are frequent and possibly associated with harm. Cerebral ischemia, such as that from vasospasm after subarachnoid hemorrhage, can be detected earlier by EEG and quantitative EEG (qEEG). Highly skilled technicians and subspecialty-trained physicians are needed to generate good quality EEG and to interpret these data. qEEG allows more efficient interpretation of large amounts of EEG and may trigger prespecified alarms. Currently, there is little high-quality data on cEEG to define indications, cost-saving potential, and impact on outcome. A few studies have demonstrated how cEEG can be integrated into multimodality brain monitoring of severely brain-injured patients.

Summary: cEEG should be considered as an integral part of multimodality monitoring of the injured brain, particularly in patients at risk for nonconvulsive seizure or ischemia. Automated alarms may help establish cEEG monitoring as an integral part of brain monitoring. All neurological ICUs that routinely care for patients with refractory status epilepticus should have the capability to perform cEEG monitoring. Further research determining the impact on outcome and making EEG monitoring more user friendly may help move this technique out of the subspecialized ICU setting into the general ICU environment. In the future, it may be possible to use specific EEG parameters as endpoints for therapeutic interventions.

Publication types

  • Review

MeSH terms

  • Brain Injuries / physiopathology
  • Brain Ischemia / diagnosis
  • Electroencephalography*
  • Epilepsy, Generalized / diagnosis
  • Humans
  • Intensive Care Units
  • Monitoring, Physiologic / methods*