The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells

Biol Cybern. 1991;65(6):459-67. doi: 10.1007/BF00204659.

Abstract

Simulated neural impulse trains were generated by a digital realization of the integrate-and-fire model. The variability in these impulse trains had as its origin a random noise of specified distribution. Three different distributions were used: the normal (Gaussian) distribution (no skew, normokurtic), a first-order gamma distribution (positive skew, leptokurtic), and a uniform distribution (no skew, platykurtic). Despite these differences in the distribution of the variability, the distributions of the intervals between impulses were nearly indistinguishable. These inter-impulse distributions were better fit with a hyperbolic gamma distribution than a hyperbolic normal distribution, although one might expect a better approximation for normally distributed inverse intervals. Consideration of why the inter-impulse distribution is independent of the distribution of the causative noise suggests two putative interval distributions that do not depend on the assumed noise distribution: the log normal distribution, which is predicated on the assumption that long intervals occur with the joint probability of small input values, and the random walk equation, which is the diffusion equation applied to a random walk model of the impulse generating process. Either of these equations provides a more satisfactory fit to the simulated impulse trains than the hyperbolic normal or hyperbolic gamma distributions. These equations also provide better fits to impulse trains derived from the maintained discharges of ganglion cells in the retinae of cats or goldfish. It is noted that both equations are free from the constraint that the coefficient of variation (CV) have a maximum of unity.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Animals
  • Cats
  • Goldfish
  • Mathematics
  • Models, Neurological*
  • Probability
  • Retina / physiology
  • Retinal Ganglion Cells / physiology*
  • Time Factors
  • Visual Pathways / physiology