Prevalence and prediction of hypoxemia in children with respiratory infections in the Peruvian Andes

J Pediatr. 1991 Dec;119(6):900-6. doi: 10.1016/s0022-3476(05)83040-9.

Abstract

To determine the effect of respiratory infections on oxyhemoglobin saturation in a high-altitude population, we recorded clinical signs, oxyhemoglobin saturation determined by pulse oximetry, and findings on radiographs of the chest of 423 children with acute respiratory infections; the children were living at an altitude of 3750 m in the Peruvian Andes. We defined hypoxemia as an oxyhemoglobin saturation value greater than 2 SD below the mean value for 153 well children in this population. Eighty-three percent of children with clinical bronchopneumonia, but only 10% of children with upper respiratory tract infection, had hypoxemia (p less than 0.001). Compared with previous studies of children living at lower altitudes, the presence of tachypnea was relatively nonspecific as a predictor of radiographically determined pneumonia or of hypoxemia, especially in infants. A history of rapid breathing was 74% sensitive and 64% specific in the prediction of hypoxemia, and performed as well as a standard World Health Organization case management algorithm in the prediction of radiographic pneumonia or hypoxemia. Radiographic pneumonia was not a sensitive predictor of hypoxemia or clinically severe illness. In contrast, the presence of hypoxemia was a useful predictor of radiographic pneumonia, with both sensitivity and specificity of 75% in infants. We conclude that acute lower respiratory tract infection in children living at high altitude is frequently associated with hypoxemia, and that oxygen should be administered to children with a diagnosis of pneumonia in these regions. Case management algorithms developed in low-altitude regions may have to be modified for high-altitude settings. In this setting, pulse oximetry is a good predictor of pneumonia. Because pulse oximetry is more objective and cheaper than radiography, its role as a clinical and investigative tool merits further exploration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acute Disease
  • Altitude*
  • Child, Preschool
  • Humans
  • Hypoxia / epidemiology*
  • Hypoxia / etiology
  • Hypoxia / physiopathology
  • Infant
  • Peru / epidemiology
  • Prevalence
  • Pulmonary Circulation / physiology
  • Reference Values
  • Respiratory Function Tests
  • Respiratory Tract Infections / complications*
  • Respiratory Tract Infections / epidemiology