Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria

J Exp Biol. 2009 Aug;212(Pt 15):2436-47. doi: 10.1242/jeb.026740.

Abstract

The flow structures produced by the hydromedusae Sarsia tubulosa and Aequorea victoria are examined using direct numerical simulation and Lagrangian coherent structures (LCS). Body motion of each hydromedusa is digitized and input to a CFD program. Sarsia tubulosa uses a jetting type of propulsion, emitting a single, strong, fast-moving vortex ring during each swimming cycle while a secondary vortex of opposite rotation remains trapped within the subumbrellar region. The ejected vortex is highly energetic and moves away from the hydromedusa very rapidly. Conversely, A. victoria, a paddling type hydromedusa, is found to draw fluid from the upper bell surface and eject this fluid in pairs of counter-rotating, slow-moving vortices near the bell margins. Unlike S. tubulosa, both vortices are ejected during the swimming cycle of A. victoria and linger in the tentacle region. In fact, we find that A. victoria and S. tubulosa swim with Strouhal numbers of 1.1 and 0.1, respectively. This means that vortices produced by A. victoria remain in the tentacle region roughly 10 times as long as those produced by S. tubulosa, which presents an excellent feeding opportunity during swimming for A. victoria. Finally, we examine the pressure on the interior bell surface of both hydromedusae and the velocity profile in the wake. We find that S. tubulosa produces very uniform pressure on the interior of the bell as well as a very uniform jet velocity across the velar opening. This type of swimming can be well approximated by a slug model, but A. victoria creates more complicated pressure and velocity profiles. We are also able to estimate the power output of S. tubulosa and find good agreement with other hydromedusan power outputs. All results are based on numerical simulations of the swimming jellyfish.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Transport / physiology
  • Hydrozoa / anatomy & histology
  • Hydrozoa / metabolism*
  • Swimming / physiology*
  • Water Movements