The objective of this study was to investigate 3 different rowing exercises and quantify the muscle activation of the torso and the hip musculature, together with the corresponding spinal loading and stiffness. Seven healthy male subjects from a university population were instrumented to obtain surface electromyography of selected trunk and hip muscles and to obtain spine position using an electromagnetic spine position sensor, together with video analysis to calculate joint moments. The 3 rowing exercises investigated are the inverted row, standing bent-over row, and the standing 1-armed cable row. The inverted row elicited the highest activation of the latissimus dorsi muscles, upper back, and hip extensor muscles. The lower activation of the lumbar erector spinae muscles during the inverted row corresponded to the lower-spine load measured. The standing bent-over row produced large activation symmetrically across the back but produced the largest lumbar spine load. The 1-armed cable row challenged the torsional capabilities of the trunk musculature. Some "core" exercises may be better for rehabilitation (e.g., having the training goals of modest muscle activation with low spine load), while other exercises may be better for athletic training (e.g., resulting in higher muscle activation and larger spine load). When prescribing "core" exercises, those wishing to spare the low back may choose the inverted row given the lowest spine load exercise. The standing bent-over row elicited large muscle activation symmetrically from the upper to lower back, however induced larger spine loads, but not surprisingly the highest spine stiffness. If torsional endurance or strength is the training goal, the 1-armed cable row might be considered.