Boxing is a sport that consists of multiple high-intensity bouts separated by minimal recovery time and may benefit from a pre-exercise alkalotic state. The purpose of this study was to observe the ergogenic potential of sodium bicarbonate (NaHCO3) ingestion on boxing performance. Ten amateur boxers volunteered to participate in 2 competitive sparring bouts. The boxers were prematched for weight and boxing ability and consumed either 0.3 g.kg(-1) body weight (BW) of NaHCO3 (BICARB) or 0.045 g.kg(-1) BW of NaCl placebo (PLAC) mixed in diluted low calorie-flavored cordial. The sparring bouts consisted of four 3-minute rounds, each separated by 1-minute seated recovery. Blood acid-base (pH, bicarbonate [HCO3(-)], base excess [BE]), and performance (rates of perceived exertion [RPE], heart rate [HR] [HR(ave) and HR(max)], total punches landed successfully) profiles were analyzed before (where applicable) and after sparring. The results indicated a significant interaction effect for HCO3(-) (p < or = 0.001) and BE (p < 0.001), but not for pH (p = 0.48). Post hoc analysis revealed higher presparring HCO3(-) and BE for the BICARB condition, but no differences between the BICARB and PLAC conditions postsparring. There was a significant increase in punches landed during the BICARB condition (p < 0.001); however, no significant interaction effects for HRave (p = 0.15), HRmax (p = 0.32), or RPE (p = 0.38). The metabolic alkalosis induced by the NaHCO3 loading elevated before and after sparring blood buffering capacity. In practical application, the findings suggest that a standard NaHCO3 loading dose (0.3 g.kg(-1)) improves punch efficacy during 4 rounds of sparring performance.