Cell-to-cell communication is achieved by passage of small molecules through gap junction membrane channels. The expression of the transforming gene from Rous sarcoma virus, v-src, induces a rapid and dramatic reduction in cell-to-cell communication in cultured cells. To determine whether connexin43, a major gap junction protein expressed in fibroblasts, is a target for the v-src protein tyrosine kinase activity, we examined the phosphorylation state of connexin43 in cells expressing variants of src. Using an antipeptide serum that recognizes connexin43, we demonstrate that this protein is phosphorylated on serine and tyrosine residues in avian and mammalian cells expressing activated src proteins. Connexin43 from control cells and cells expressing nonactivated variants of the src protein was phosphorylated solely on serine residues. In lysates from v-src-transformed cells, all phosphorylated connexin43 molecules were cleared from the lysate by sequential immunoprecipitations using the phosphotyrosine antibodies, suggesting that each molecule of phosphorylated connexin43 contains both phosphoserine and phosphotyrosine. We have also examined junctional permeability in cells expressing src variants and find that loss of cell-to-cell communication correlates with tyrosine phosphorylation of connexin43.