Considerations in the statistical analysis of hemodialysis patient survival
- PMID: 19643932
- PMCID: PMC2736780
- DOI: 10.1681/ASN.2008050551
Considerations in the statistical analysis of hemodialysis patient survival
Abstract
The association of hemodialysis dosage with patient survival is controversial. Here, we tested the hypothesis that methods for survival analysis may influence conclusions regarding dialysis dosage and mortality. We analyzed all-cause mortality by proportional hazards and accelerated failure time regression models in a cohort of incident hemodialysis patients who were followed for 9 yr. Both models identified age, race, heart failure, physical functioning, and comorbidity scores as important predictors of patient survival. Using proportional hazards, there was no statistically significant association between mortality and Kt/V (hazard ratio 0.72; 95% confidence interval 0.45 to 1.14). In contrast, using accelerated failure time models, each 0.1-U increment of Kt/V improved adjusted median patient survival by 3.50% (95% confidence interval 0.20 to 7.08%). Proportional hazard models also yielded less accurate estimates for median survival. These findings are consistent with an additive damage model for the survival of patients who are on hemodialysis. In this conceptual model, the assumptions of the proportional hazard model are violated, leading to underestimation of the importance of dialysis dosage. These results suggest that future studies of dialysis adequacy should consider this additive damage model when selecting methods for survival analysis. Accelerated failure time models may be useful adjuncts to the Cox model when studying outcomes of dialysis patients.
Figures
Comment in
-
Measuring patient survival on hemodialysis.J Am Soc Nephrol. 2009 Sep;20(9):1866-7. doi: 10.1681/ASN.2009070689. Epub 2009 Aug 13. J Am Soc Nephrol. 2009. PMID: 19679670 No abstract available.
-
Does a statistical method suggest a new pathobiology for hemodialysis patients?J Am Soc Nephrol. 2009 Sep;20(9):1867-9. doi: 10.1681/ASN.2009060649. Epub 2009 Aug 27. J Am Soc Nephrol. 2009. PMID: 19713306 No abstract available.
Similar articles
-
Charlson Comorbidity Index is a predictor of outcomes in incident hemodialysis patients and correlates with phase angle and hospitalization.Int J Artif Organs. 2004 Apr;27(4):330-6. doi: 10.1177/039139880402700409. Int J Artif Organs. 2004. PMID: 15163067
-
Association of Dose and Frequency on the Survival of Patients on Maintenance of Hemodialysis in China: A Kaplan-Meier and Cox-Proportional Hazard Model Analysis.Med Sci Monit. 2018 Jul 31;24:5329-5337. doi: 10.12659/MSM.909404. Med Sci Monit. 2018. PMID: 30063696 Free PMC article.
-
Association between serum 2-microglobulin level and infectious mortality in hemodialysis patients.Clin J Am Soc Nephrol. 2008 Jan;3(1):69-77. doi: 10.2215/CJN.02340607. Epub 2007 Dec 5. Clin J Am Soc Nephrol. 2008. PMID: 18057309 Free PMC article. Clinical Trial.
-
Dialysis Modality and Mortality in the Elderly: A Meta-Analysis.Clin J Am Soc Nephrol. 2015 Jun 5;10(6):983-93. doi: 10.2215/CJN.05160514. Epub 2015 May 4. Clin J Am Soc Nephrol. 2015. PMID: 25941194 Free PMC article. Review.
-
Comparison of long-term survival between hemodialysis and peritoneal dialysis.Adv Perit Dial. 1996;12:79-88. Adv Perit Dial. 1996. PMID: 8865878 Review.
Cited by
-
Health-related quality of life and long-term mortality in young and middle-aged hemodialysis patients.Int Urol Nephrol. 2021 Nov;53(11):2377-2384. doi: 10.1007/s11255-021-02894-8. Epub 2021 May 24. Int Urol Nephrol. 2021. PMID: 34028642
-
Application of Parametric Models to a Survival Analysis of Hemodialysis Patients.Nephrourol Mon. 2016 Sep 13;8(6):e28738. doi: 10.5812/numonthly.28738. eCollection 2016 Nov. Nephrourol Mon. 2016. PMID: 27896235 Free PMC article.
-
Dialyzer Reuse and Outcomes of High Flux Dialysis.PLoS One. 2015 Jun 9;10(6):e0129575. doi: 10.1371/journal.pone.0129575. eCollection 2015. PLoS One. 2015. PMID: 26057383 Free PMC article.
-
The National Institute of Diabetes and Digestive and Kidney Diseases Central Repositories: a valuable resource for nephrology research.Clin J Am Soc Nephrol. 2015 Apr 7;10(4):710-5. doi: 10.2215/CJN.06570714. Epub 2014 Nov 6. Clin J Am Soc Nephrol. 2015. PMID: 25376765 Free PMC article.
-
Modeling survival of arteriovenous accesses for hemodialysis: semiparametric versus parametric methods.Clin J Am Soc Nephrol. 2010 Jul;5(7):1243-8. doi: 10.2215/CJN.06190809. Epub 2010 Apr 22. Clin J Am Soc Nephrol. 2010. PMID: 20413435 Free PMC article.
References
-
- Lowrie EG, Laird NM, Parker TF, Sargent JA:Effect of the hemodialysis prescription of patient morbidity: Report from the National Cooperative Dialysis Study. N Engl J Med 305: 1176–1181, 1981 - PubMed
-
- Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, Mujais S:Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13: 1307–1320, 2002 - PubMed
-
- Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R:Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347: 2010–2019, 2002 - PubMed
-
- Owen WF, Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM:The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329: 1001–1006, 1993 - PubMed
-
- Saran R, Bragg-Gresham JL, Levin NW, Twardowski ZJ, Wizemann V, Saito A, Kimata N, Gillespie BW, Combe C, Bommer J, Akiba T, Mapes DL, Young EW, Port FK:Longer treatment time and slower ultrafiltration in hemodialysis: Associations with reduced mortality in the DOPPS. Kidney Int 69: 1222–1228, 2006 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
