Microarray-based comparative genomic indexing of the Cronobacter genus (Enterobacter sakazakii)

Int J Food Microbiol. 2009 Dec 31;136(2):159-64. doi: 10.1016/j.ijfoodmicro.2009.07.008. Epub 2009 Jul 13.

Abstract

Cronobacter (Enterobacter sakazakii) is a recently defined genus consisting of 6 species. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomic indexing (CGI) was undertaken to determine the presence/absence of genes identified in the former sequenced genome and to compare 276 selected open reading frames within the different Cronobacter strains. Seventy-eight Cronobacter strains (60 C. sakazakii, 8 C. malonaticus, 5 C. dublinensis, 2 C. muytjensii, 1 C. turicensis, 1 C. genomospecies 1, and 1 Cronobacter sp.) representing clinical and environmental isolates from various geographical locations were investigated. Hierarchical clustering of the CGI data showed that the species grouped as clusters. The 5 C. dublinensis and 2 C. muytjensii strains examined formed distinct species clusters. Moreover, all of the C. sakazakii and 3 of 8 C. malonaticus strains formed a large cluster. The remaining C. malonaticus strains formed a sub-group within a larger cluster that also contained C. turicensis, C. genomospecies 1, and an unknown Cronobacter sp. Cronobacter sakazakii and 3 of 8 C. malonaticus strains could be distinguished from the others within the collection by the presence of 10 fimbrial related genes. Similarly, capsule and/or lipopolysaccharide (LPS) related glycosyltransferases differentiated several of the C. sakazakii strains from each other.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Typing Techniques
  • Cluster Analysis
  • Comparative Genomic Hybridization*
  • DNA, Bacterial / genetics
  • Enterobacteriaceae / classification
  • Enterobacteriaceae / genetics*
  • Genes, Bacterial
  • Oligonucleotide Array Sequence Analysis
  • Open Reading Frames
  • Sequence Analysis, DNA
  • Species Specificity

Substances

  • DNA, Bacterial