Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 15;88(3):339-45.
doi: 10.1097/TP.0b013e3181ae5dcf.

Cotransplantation with xenogenetic neonatal porcine sertoli cells significantly prolongs islet allograft survival in nonimmunosuppressive rats

Affiliations

Cotransplantation with xenogenetic neonatal porcine sertoli cells significantly prolongs islet allograft survival in nonimmunosuppressive rats

Zhuzeng Yin et al. Transplantation. .

Abstract

Background: In addition to possessing immune privileged properties, Sertoli cells are known to actively suppress responses to cotransplanted cells. An important question is whether this "bystander suppression" is limited to cells of the same origin as the Sertoli cells or whether suppression extends to unrelated cells.

Methods: Neonatal porcine Sertoli cells (NPSCs) were transplanted with allogeneic islets (Sprague-Dawley rat) into immune competent Wistar rats subsequent to induction of diabetes by alloxan administration.

Results: Although allogeneic islets alone had a mean survival time of 5.67+/-0.94 days, islets cotransplanted with 1.5 x 10 xenogeneic NPSCs displayed a survival of 8.33+/-0.58 days. Increasing the concentration of NPSCs to 1.0 x10 yielded a further increase in survival to 16.33+/-1.53 days. Augmented islet survival was associated with reduced lymphocytic infiltrate and elevated numbers of Sox9 positive cells. Mechanistically, it seemed that Fas ligand was not involved in prolongation of survival because in contrast to adult Sertoli cells, NPSCs lacked expression of this gene.

Conclusions: These data suggest that xenogeneic Sertoli cells exert a global immune suppressive effect that extends across species barriers in a stringent model of alloimmune rejection. The combination of NPSCs with other immune modulatory regimes may yield novel approaches toward prevention of allo-islet transplant rejection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms