Segregation distortion and the evolution of sex-determining mechanisms

Heredity (Edinb). 2010 Jan;104(1):100-12. doi: 10.1038/hdy.2009.104.

Abstract

Segregation distorters are alleles that distort normal segregation in their own favour. Sex chromosomal distorters lead to biased sex ratios, and the presence of such distorters, therefore, may induce selection for a change in the mechanism of sex determination. The evolutionary dynamics of distorter-induced changes in sex determination has only been studied in some specific systems. Here, we present a generic model for this process. We consider three scenarios: a driving X chromosome, a driving Y chromosome and a driving autosome with a male-determining factor. We investigate how the invasion prospects of a new sex-determining factor are affected by the strength of distortion and the fitness effect of the distorting allele. Our models show that in many cases, segregation distortion does create selection pressure, allowing novel sex-determining alleles to spread. When distortion leads to female-biased sex ratios, a new masculinizing gene can invade, leading to a new male heterogametic system. When distortion leads to male-biased sex ratios, a feminizing factor can invade and cause a switch to female heterogamety. In many cases, the distorter-induced change in the sex-determining system eventually leads to loss of the distorter from the population. Hence, the presence of sex chromosomal distorters will often only be transient, and the distorters may remain unnoticed. The role of segregation distortion in the evolution of sex determination may, therefore, be underestimated.

MeSH terms

  • Animals
  • Evolution, Molecular*
  • Female
  • Genotype
  • Male
  • Models, Genetic
  • Sex Determination Processes*
  • X Chromosome / genetics*
  • Y Chromosome / genetics*