Menopausal hormone therapy (HT) is associated with an increased breast cancer risk among postmenopausal women. In this study, we investigated genetic effect modification of HT associated breast cancer risk in 3,149 postmenopausal breast cancer patients and 5,489 controls from the two German population-based case-control studies MARIE and GENICA. Twenty-eight polymorphisms of 14 candidate genes including two drug and hormone transporter genes (ABCB1/MDR1 and SHBG), four genes involved in cell cycle regulation (BRCA1, P21/CDKN1A, STK15/AURKA and TP53), six cytokine genes (IGFBP3, IL6, TGFB1, TNF, LTA and IGF1), and two cytokine receptor genes (EGFR and ERBB2) were genotyped using validated methods. Conditional logistic regression was used to assess multiplicative statistical interaction between polymorphisms and duration of estrogen-progestagen therapy and estrogen monotherapy use with regard to breast cancer risk assuming log-additive and co-dominant modes of inheritance. Women homozygous for the major ABCB1_rs2214102_G allele were found to be at a significantly increased breast cancer risk associated with combined estrogen-progestagen therapy [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.12-1.23, P (interaction) = 0.022]. Additionally, risk associated with estrogen monotherapy was modified by BRCA1_rs799917. We observed a trend with increasing minor T alleles leading to the highest risk in homozygous carriers of the minor allele [OR (95% CI) = 1.17 (0.98-1.39), 1.06 (0.98-1.14), and 1.02 (0.94-1.11) for homozygous minor, heterozygous, and homozygous major allele carriers, respectively; P (interaction) = 0.032]. Our results suggest that genetic variants in ABCB1 and BRCA1 may modify the effect of HT on postmenopausal breast cancer risk.