Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 15;126(4):1029-35.
doi: 10.1002/ijc.24823.

Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG

Affiliations

Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG

Jianzhen Xu et al. Int J Cancer. .

Abstract

MicroRNA-153 (miR-153) is a brain-specific miRNA that is expressed at a significantly lower level in glioblastoma (GBM) relative to non-neoplastic brain tissue. Although the expression pattern of miR-153 has been extensively established, its target genes and cellular mechanism remain undefined. To investigate into the potential function of miR-153 in glioblastmas, we transfected a GBM cell line DBTRG-05MG with synthetic miR-153 oligos and observed decreased cell proliferation and increased apoptosis. Bioinformatics analysis revealed that anti-apoptosis family member B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1) are potential targets of miR-153. Indeed, Western blot analysis indicated that miR-153 downregulated both Bcl-2 and Mcl-1 at the protein levels. Single strand miR-153 inhibitor, which forms complementary base-pair with endogenous miR-153, efficiently blocked the apoptosis and target protein degradation induced by overexpression of miR-153. By luciferase reporter assays, we further showed that miR-153 inhibited Bcl-2 and Mcl-1 expressions by directly targeting the 3'UTR regions of their respective mRNAs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources