Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes

Mol Microbiol. 2009 Sep;73(5):815-25. doi: 10.1111/j.1365-2958.2009.06824.x. Epub 2009 Aug 4.


Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • DNA-Directed RNA Polymerases / metabolism*
  • Disulfides / metabolism
  • Electrophoresis, Gel, Two-Dimensional
  • Endopeptidase Clp / metabolism
  • Feedback, Physiological*
  • Gene Expression Regulation, Bacterial*
  • Models, Biological
  • Molecular Sequence Data
  • Mycobacterium smegmatis / genetics
  • Oxidation-Reduction
  • Oxidative Stress
  • Protein Isoforms / metabolism
  • Protein Stability
  • Sequence Alignment
  • Sigma Factor / metabolism*
  • Streptomyces coelicolor / physiology*
  • Sulfhydryl Compounds / metabolism


  • Disulfides
  • Protein Isoforms
  • Sigma Factor
  • Sulfhydryl Compounds
  • RNA polymerase sigma 70
  • DNA-Directed RNA Polymerases
  • Endopeptidase Clp