MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis
- PMID: 19684242
- PMCID: PMC2751950
- DOI: 10.1105/tpc.109.067819
MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis
Erratum in
- Plant Cell. 2010 Mar;22(3):991
Abstract
Expression of the Arabidopsis thaliana MYB transcription factor TRANSPARENT TESTA 2 (TT2) in Medicago trunculata hairy roots induces both proanthocyanidin accumulation and the ATP-dependent vacuolar/vesicular uptake of epicatechin 3'-O-glucoside; neither process is active in control roots that do, however, possess anthocyanidin 3-O-glucoside vacuolar uptake activity. A vacuolar membrane-localized multidrug and toxic compound extrusion (MATE) transporter, Medicago MATE1, was identified at the molecular level and shown to preferentially transport epicatechin 3'-O-glucoside. Genetic evidence has implicated TT12, a tonoplastic MATE transporter from Arabidopsis, in the transport of precursors for proanthocyanidin biosynthesis in the seed coat. However, although Arabidopsis TT12 facilitates the transport of cyanidin 3-O-glucoside into membrane vesicles when expressed in yeast, there is no evidence that cyanidin 3-O-glucoside is converted to proanthocyanidins after transport into the vacuole. Here, we show that Arabidopsis TT12, like Medicago MATE1, functions to transport epicatechin 3'-O-glucoside as a precursor for proanthocyanidin biosynthesis, and Medicago MATE1 complements the seed proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis of biochemical properties, tissue-specific expression pattern, and genetic loss-of-function analysis, we conclude that MATE1 is an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed coat. Implications of these findings for the assembly of oligomeric proanthocyanidins are discussed.
Figures
Similar articles
-
The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat.Plant Cell. 2007 Jun;19(6):2023-38. doi: 10.1105/tpc.106.046029. Epub 2007 Jun 29. Plant Cell. 2007. PMID: 17601828 Free PMC article.
-
Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.Planta. 2013 Jul;238(1):139-54. doi: 10.1007/s00425-013-1879-z. Epub 2013 Apr 17. Planta. 2013. PMID: 23592226
-
MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula.Plant Cell. 2011 Apr;23(4):1536-55. doi: 10.1105/tpc.110.080804. Epub 2011 Apr 5. Plant Cell. 2011. PMID: 21467581 Free PMC article.
-
New perspectives on proanthocyanidin biochemistry and molecular regulation.Phytochemistry. 2003 Sep;64(2):367-83. doi: 10.1016/s0031-9422(03)00377-7. Phytochemistry. 2003. PMID: 12943753 Review.
-
The mysteries of proanthocyanidin transport and polymerization.Plant Physiol. 2010 Jun;153(2):437-43. doi: 10.1104/pp.110.155432. Epub 2010 Apr 13. Plant Physiol. 2010. PMID: 20388668 Free PMC article. Review. No abstract available.
Cited by
-
Inverse pH Gradient-Assay for Facile Characterization of Proton-Antiporters in Xenopus Oocytes.Membranes (Basel). 2024 Feb 1;14(2):39. doi: 10.3390/membranes14020039. Membranes (Basel). 2024. PMID: 38392666 Free PMC article.
-
A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi.Plants (Basel). 2023 May 9;12(10):1929. doi: 10.3390/plants12101929. Plants (Basel). 2023. PMID: 37653845 Free PMC article.
-
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy.Plants (Basel). 2023 Jul 19;12(14):2687. doi: 10.3390/plants12142687. Plants (Basel). 2023. PMID: 37514301 Free PMC article.
-
Exploring genetic architecture for pod-related traits in soybean using image-based phenotyping.Mol Breed. 2021 Mar 29;41(4):28. doi: 10.1007/s11032-021-01223-2. eCollection 2021 Apr. Mol Breed. 2021. PMID: 37309355 Free PMC article.
-
Vaccinium as a comparative system for understanding of complex flavonoid accumulation profiles and regulation in fruit.Plant Physiol. 2023 Jul 3;192(3):1696-1710. doi: 10.1093/plphys/kiad250. Plant Physiol. 2023. PMID: 37129240 Free PMC article.
References
-
- Abrahams, S., Lee, E., Walker, A.R., Tanner, G.J., Larkin, P., and Ashton, A.R. (2003). The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 35: 624–636. - PubMed
-
- Ariga, T., Asao, Y., Sugimoto, H., and Yokotuska, T. (1981). Occurrence of astringent oligomeric proanthocyanidins in legume seeds. Agric. Biol. Chem. 45: 2705–2708.
-
- Baxter, I.R., Young, J.C., Armstrong, G., Foster, N., Bogenschutz, N., Cordova, T., Peer, W.A., Hazen, S.P., Murphy, A.S., and Harper, J.F. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102: 2649–2654. - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
