Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates

Environ Manage. 2009 Oct;44(4):745-54. doi: 10.1007/s00267-009-9350-4. Epub 2009 Aug 22.

Abstract

We investigated the effects of two river restoration projects on hydromorphology and macroinvertebrate fauna in two German lowland rivers, the Schwalm and the Gartroper Mühlenbach. The stream channels were re-meandered and the floodplain levels were lowered to better connect the streams to their floodplains. The restoration was performed 10 years ago in the Schwalm and 2 years ago in the Gartroper Mühlenbach. We compared the restored reaches to nearby anthropogenically straightened reaches. Twenty-five hydromorphological parameters were recorded on twenty transects; between nine and 23 substrate-specific macroinvertebrate samples were taken per reach. Several hydromorphological parameters, such as the number and width of channel features and the number of substrate types, were significantly higher in the restored reaches compared to nearby anthropogenically straightened reaches. Total numbers of invertebrate families, genera, and taxa were also higher in the restored reaches than in the anthropogenically straightened reaches. Biotic substrates like dead wood or macrophytes were more abundant in the restored reaches, and these substrates hosted 28 taxa not found in the straightened reaches. While diversity was high in both restored reaches, overall abundance increased only in the river that was restored 10 years ago. Using NMS-analysis, substrate-specific faunistic samples of the restored reaches were compared to those of the straightened reaches. Our results revealed different invertebrate communities on the same substrates in the recently restored river. In the 10-year-old restoration, however, the same substrates were similarly inhabited. This comparable colonization of substrates may reflect succession in the macroinvertebrate community. The results are discussed according to the re-colonization potentials of the upstream and downstream reaches and the dispersal capacity of taxa.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Conservation of Natural Resources*
  • Environment Design
  • Invertebrates*
  • Population Dynamics
  • Rivers*
  • Water Movements