The role of B cells in systemic sclerosis

Biologics. 2008 Sep;2(3):389-95.


Systemic sclerosis (SSc) is a connective disease characterized by features of autoimmunity, vasculopathy, inflammation, and fibrosis. The disease typically starts with Raynaud's phenomenon, followed by skin thickening in the extremities due to inflammation and fibrosis. Fibrosis results from excessive collagen production by fibroblasts, which constitutes the final common pathway of complex cellular interactions including B cells. Several studies have indicated that B cells may play a role in SSc. Lesional skin infiltrates from SSc patients consist of a variety of cells, including eosinophils, neutrophils, lymphocytes, plasma cells, and macrophages. Autoantibodies of several specificities are present in the serum of SSc patients of which antitopoisomerase 1 is the most common, and evidence has been gathered for a potential pathogenic role of some autoantibodies, eg, anti-PDGF antibodies. The blood of SSc patients contains an increased proportion of naïve B cells but a decreased proportion of memory B cells. Furthermore, serum levels of interleukin-6, an important pro-inflammatory cytokine, have been shown to correlate with skin fibrosis. Animal models of SSc have provided more in-depth information on the role of B lymphocytes, eg, through disruption of B cell function. In this review we will discuss the evidence that B cells are involved in the pathogenesis of SSc.

Keywords: B lymphocyte; fibrosis; systemic sclerosis.