Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;91(9):2222-8.
doi: 10.2106/JBJS.H.00881.

Mapping of Scapular Fractures With Three-Dimensional Computed Tomography

Affiliations

Mapping of Scapular Fractures With Three-Dimensional Computed Tomography

Bryan M Armitage et al. J Bone Joint Surg Am. .

Abstract

Background: Fractures of the scapula involve a unique and challenging set of considerations, which must be understood to provide optimal treatment. The primary goal of this study was to create a frequency map of a series of surgically treated scapular fractures that specifically involved the scapular body and/or neck.

Methods: A prospective database was used in the collection of consecutive radiographic imaging studies of patients undergoing operative treatment of scapular fractures. Scanned three-dimensional computed tomography images were superimposed and oriented to fit a model scapular template. Size dimensions were normalized by aligning specific scapular landmarks. Fracture lines were identified and traced over the combined three-dimensional computed tomography model to create a scapular fracture map.

Results: Of ninety fractures that met the criteria for inclusion, 68% involved the inferior aspect of the glenoid neck and 71% involved the superior vertebral border. Seventeen percent of the patterns included articular extension, and 22% of the fractures entered the spinoglenoid notch. Of fractures involving the inferior aspect of the glenoid neck at the lateral scapular border, 84% traversed medially to exit just inferior to the medial extent of the scapular spine, and 59% of these inferior neck fractures also had propagation to the inferior third of the vertebral border. Among the fractures involving the spinoglenoid notch, the most common pattern was demonstrated by coexisting fracture lines; 60% of the fractures of the spinoglenoid notch exited just inferior to the glenoid, 65% extended to the superior-medial vertebral border, and 45% extended to the inferior-medial vertebral border. In contrast, articular fractures did not follow predictable patterns; they demonstrated the greatest variability in trajectory, which was almost random, and there was a wide distribution of exit points along the vertebral border.

Conclusions: Surgically treated scapular fractures display very common patterns. The most common pattern is the lateral border fracture immediately inferior to the glenoid, which extends to the superior vertebral border in more than two-thirds of cases. A smaller proportion of scapular fractures enter the spinoglenoid notch or the articular surface. There is great variation in the patterns of fractures involving the articular surface.

Similar articles

See all similar articles

Cited by 25 articles

See all "Cited by" articles
Feedback