Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow

J Biomech Eng. 2009 Sep;131(9):091002. doi: 10.1115/1.3148202.


The canine nasal cavity contains a complex airway labyrinth, dedicated to respiratory air conditioning, filtering of inspired contaminants, and olfaction. The small and contorted anatomical structure of the nasal turbinates has, to date, precluded a proper study of nasal airflow in the dog. This study describes the development of a high-fidelity computational fluid dynamics (CFD) model of the canine nasal airway from a three-dimensional reconstruction of high-resolution magnetic resonance imaging scans of the canine anatomy. Unstructured hexahedral grids are generated, with large grid sizes ((10-100) x 10(6) computational cells) required to capture the details of the nasal airways. High-fidelity CFD solutions of the nasal airflow for steady inspiration and expiration are computed over a range of physiological airflow rates. A rigorous grid refinement study is performed, which also illustrates a methodology for verification of CFD calculations on complex unstructured grids in tortuous airways. In general, the qualitative characteristics of the computed solutions for the different grid resolutions are fairly well preserved. However, quantitative results such as the overall pressure drop and even the regional distribution of airflow in the nasal cavity are moderately grid dependent. These quantities tend to converge monotonically with grid refinement. Lastly, transient computations of canine sniffing were carried out as part of a time-step study, demonstrating that high temporal accuracy is achievable using small time steps consisting of 160 steps per sniff period. Here we demonstrate that acceptable numerical accuracy (between approximately 1% and 15%) is achievable with practical levels of grid resolution (approximately 100 x 10(6) computational cells). Given the popularity of CFD as a tool for studying flow in the upper airways of humans and animals, based on this work we recommend the necessity of a grid dependence study and quantification of numerical error when presenting CFD results in complicated airways.

Publication types

  • Evaluation Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Animals
  • Computer Simulation
  • Dogs
  • Models, Biological*
  • Nasal Cavity / physiology*
  • Pulmonary Ventilation / physiology*
  • Rheology / methods*