Studies on the metabolism of the Delta9-tetrahydrocannabinol precursor Delta9-tetrahydrocannabinolic acid A (Delta9-THCA-A) in rat using LC-MS/MS, LC-QTOF MS and GC-MS techniques

J Mass Spectrom. 2009 Oct;44(10):1423-33. doi: 10.1002/jms.1624.

Abstract

In Cannabis sativa, Delta9-Tetrahydrocannabinolic acid-A (Delta9-THCA-A) is the non-psychoactive precursor of Delta9-tetrahydrocannabinol (Delta9-THC). In fresh plant material, about 90% of the total Delta9-THC is available as Delta9-THCA-A. When heated (smoked or baked), Delta9-THCA-A is only partially converted to Delta9-THC and therefore, Delta9-THCA-A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Delta9-THCA-A and to examine particularly whether oral intake of Delta9-THCA-A leads to in vivo formation of Delta9-THC in a rat model. After oral application of pure Delta9-THCA-A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution LC-MS using time of flight-mass spectrometry (TOF-MS) for accurate mass measurement. For detection of Delta9-THC and its metabolites, urine extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). The identified metabolites show that Delta9-THCA-A undergoes a hydroxylation in position 11 to 11-hydroxy-Delta9-tetrahydrocannabinolic acid-A (11-OH-Delta9-THCA-A), which is further oxidized via the intermediate aldehyde 11-oxo-Delta9-THCA-A to 11-nor-9-carboxy-Delta9-tetrahydrocannabinolic acid-A (Delta9-THCA-A-COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Delta9-THCA-A undergoes hydroxylation in position 8 to 8-alpha- and 8-beta-hydroxy-Delta9-tetrahydrocannabinolic acid-A, respectively, (8alpha-Hydroxy-Delta9-THCA-A and 8beta-Hydroxy-Delta9-THCA-A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Delta9-THCA-A to Delta9-THC was not observed.

MeSH terms

  • Administration, Oral
  • Animals
  • Chromatography, High Pressure Liquid
  • Dronabinol / blood
  • Dronabinol / pharmacokinetics*
  • Dronabinol / urine
  • Gas Chromatography-Mass Spectrometry / methods
  • Male
  • Mass Spectrometry / methods*
  • Rats
  • Rats, Wistar
  • Spectrometry, Mass, Electrospray Ionization / methods
  • Tandem Mass Spectrometry / methods

Substances

  • Dronabinol