Bayesian model selection maps for group studies
- PMID: 19732837
- PMCID: PMC2791519
- DOI: 10.1016/j.neuroimage.2009.08.051
Bayesian model selection maps for group studies
Abstract
This technical note describes the construction of posterior probability maps (PPMs) for Bayesian model selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian model comparisons that are analogous to the F-tests used in statistical parametric mapping, with the advantage that the models to be compared do not need to be nested. Additionally, an arbitrary number of models can be compared together. This note describes the integration of the Bayesian mapping approach with a random effects analysis model for BMS using group data. We illustrate the method using fMRI data from a group of subjects performing a target detection task.
Figures
Similar articles
-
Posterior probability maps and SPMs.Neuroimage. 2003 Jul;19(3):1240-9. doi: 10.1016/s1053-8119(03)00144-7. Neuroimage. 2003. PMID: 12880849
-
Bayesian second-level analysis of functional magnetic resonance images.Neuroimage. 2003 Oct;20(2):1346-55. doi: 10.1016/S1053-8119(03)00443-9. Neuroimage. 2003. PMID: 14568503
-
Bayesian spatiotemporal model of fMRI data.Neuroimage. 2010 Jan 1;49(1):442-56. doi: 10.1016/j.neuroimage.2009.07.047. Epub 2009 Jul 29. Neuroimage. 2010. PMID: 19646535
-
Bayesian inference in FMRI.Neuroimage. 2012 Aug 15;62(2):801-10. doi: 10.1016/j.neuroimage.2011.10.047. Epub 2011 Oct 20. Neuroimage. 2012. PMID: 22063092 Review.
-
Bayesian networks for fMRI: a primer.Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18. Neuroimage. 2014. PMID: 24140939 Review.
Cited by
-
Anxiety attenuates learning advantages conferred by statistical stability and induces loss of volatility-attuning in brain activity.Hum Brain Mapp. 2023 Apr 15;44(6):2557-2571. doi: 10.1002/hbm.26230. Epub 2023 Feb 22. Hum Brain Mapp. 2023. PMID: 36811216 Free PMC article.
-
Action-value comparisons in the dorsolateral prefrontal cortex control choice between goal-directed actions.Nat Commun. 2014 Jul 23;5:4390. doi: 10.1038/ncomms5390. Nat Commun. 2014. PMID: 25055179 Free PMC article.
-
Neural computations underlying inverse reinforcement learning in the human brain.Elife. 2017 Oct 30;6:e29718. doi: 10.7554/eLife.29718. Elife. 2017. PMID: 29083301 Free PMC article.
-
Categorical evidence, confidence, and urgency during probabilistic categorization.Neuroimage. 2016 Jan 15;125:941-952. doi: 10.1016/j.neuroimage.2015.11.011. Epub 2015 Nov 10. Neuroimage. 2016. PMID: 26564532 Free PMC article.
-
Efficient posterior probability mapping using Savage-Dickey ratios.PLoS One. 2013;8(3):e59655. doi: 10.1371/journal.pone.0059655. Epub 2013 Mar 22. PLoS One. 2013. PMID: 23533640 Free PMC article.
References
-
- Andersson J.L., Hutton C., Ashburner J., Turner R., Friston K. Modeling geometric deformations in EPI time series. NeuroImage. May 2001;13:903–919. - PubMed
-
- Beal M., Ghahramani Z. The variational Bayesian EM algorithms for incomplete data: with application to scoring graphical model structures. In: Bernardo J., Bayarri M., Berger J., Dawid A., editors. Bayesian Statistics 7. Cambridge University Press; 2003.
-
- Beal, Matthew J., 2003 Variational Algorithms for Approximate Bayesian Inference. PhD thesis, University College London, May 2003.
-
- Bernardo J.M., Smith A.M. Bayesian theory. Meas. Sci. Technol. 2001;12:221–222.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
