The smallest chemical reaction system with bistability
- PMID: 19737387
- PMCID: PMC2749052
- DOI: 10.1186/1752-0509-3-90
The smallest chemical reaction system with bistability
Abstract
Background: Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity.
Results: Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i) reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations (decreasing importance from i-iii). The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular).We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature.Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc.), we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.). This helps modelling multistable systems and it is important for corresponding synthetic biology projects.
Conclusion: The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with simple systems and for synthetically designing new bistable systems. Our simple model system is also well suited for corresponding teaching purposes.
Figures
) and the thick dashed line the rate of production (positive term in
). The three crossings indicate the three steady states
. The thin lines show the contributions of the three degradation terms separately: quadratic term k2x2 dashed, the effectively cubic term k3 xy solid, and the linear term k4 x dotdashed. The inset shows a zoomed version for x < 2.1.
Similar articles
-
Measurement of bistability in a multidimensional parameter space.Integr Biol (Camb). 2017 Feb 20;9(2):167-177. doi: 10.1039/c6ib00242k. Integr Biol (Camb). 2017. PMID: 28134382
-
Detection of biological switches using the method of Gröebner bases.BMC Bioinformatics. 2019 Nov 28;20(1):615. doi: 10.1186/s12859-019-3155-0. BMC Bioinformatics. 2019. PMID: 31779580 Free PMC article.
-
Determinants of bistability in induction of the Escherichia coli lac operon.IET Syst Biol. 2008 Sep;2(5):293-303. doi: 10.1049/iet-syb:20080095. IET Syst Biol. 2008. PMID: 19045824
-
Tweaking biological switches through a better understanding of bistability behavior.Curr Opin Biotechnol. 2008 Oct;19(5):475-81. doi: 10.1016/j.copbio.2008.08.010. Epub 2008 Oct 1. Curr Opin Biotechnol. 2008. PMID: 18804166 Free PMC article. Review.
-
Ultrasensitivity part III: cascades, bistable switches, and oscillators.Trends Biochem Sci. 2014 Dec;39(12):612-8. doi: 10.1016/j.tibs.2014.10.002. Epub 2014 Nov 10. Trends Biochem Sci. 2014. PMID: 25456048 Free PMC article. Review.
Cited by
-
Linear stability analysis of chemical mechanism, Listanalchem: A tool for the search of spontaneous mirror symmetry breaking.MethodsX. 2023 Aug 16;11:102307. doi: 10.1016/j.mex.2023.102307. eCollection 2023 Dec. MethodsX. 2023. PMID: 37663005 Free PMC article.
-
Dynamic model assuming mutually inhibitory biomarkers of frailty suggests bistability with contrasting mobility phenotypes.Front Netw Physiol. 2023 May 4;3:1079070. doi: 10.3389/fnetp.2023.1079070. eCollection 2023. Front Netw Physiol. 2023. PMID: 37216041 Free PMC article.
-
Using sensitivity analyses to understand bistable system behavior.BMC Bioinformatics. 2023 Apr 6;24(1):136. doi: 10.1186/s12859-023-05206-2. BMC Bioinformatics. 2023. PMID: 37024783 Free PMC article.
-
Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors.Phys Rev Res. 2020 Oct 13;2(4):043069. doi: 10.1103/PhysRevResearch.2.043069. Phys Rev Res. 2020. PMID: 36855604 Free PMC article.
-
Modeling ATP-mediated endothelial cell elongation on line patterns.Biomech Model Mechanobiol. 2022 Oct;21(5):1531-1548. doi: 10.1007/s10237-022-01604-2. Epub 2022 Jul 28. Biomech Model Mechanobiol. 2022. PMID: 35902488 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
