Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions

Int J Radiat Biol. 1990 Sep;58(3):397-415. doi: 10.1080/09553009014551761.

Abstract

Gas chromatography-mass spectrometry with selected-ion monitoring was used to measure the yields of radiation-induced base products in aqueous solutions of native or heat-denatured DNA irradiated in the dose range 20-100 Gy. These DNA solutions were saturated with nitrous oxide, nitrogen, air or 20% oxygen in nitrous oxide during irradiation. The products measured were as follows: 5,6-dihydrothymine; 5-hydroxy-5,6-dihydrothymine; 5,6-dihydrothymine (thymine glycol); 5-hydroxy-5,6-dihydrocytosine; 5,6-dihydroxy-5,6- dihydrocytosine (cytosine glycol); 4,6-diamino-5-formamidopyrimidine; 7,8-dihydro-8-oxoadenine (8-hydroxyadenine); 2,6-diamino-4-hydroxy-5- formamidopyrimidine; and 7,8-dihydro-8-oxoguanine (8-hydroxyguanine). In oxygenated solutions, 5,6-dihydrothymine, 5-hydroxy-5,6-dihydrothymine and 5-hydroxy-5,6-dihydrocytosine were not formed. The yields of all products, other than 5,6-dihydrothymine, were greater in irradiated DNA samples from N2O-saturated solutions than from N2-saturated solutions. In N2-saturated solutions the yield of 8-hydroxyadenine was low and 8-hydroxyguanine was undetectable. Yields of pyrimidine products in heat-denatured DNA were greater than those in native DNA using all types of gases. However, the effects of DNA conformation on the yields of purine products were dependent on the type of gas used to saturate the irradiated DNA solutions. Yields of formamidopyrimidines were generally lower in solutions of DNA irradiated in the native than in the heat-denatured conformation. In air-saturated solutions of DNA, yields of 8-hydroxypurines were not influenced greatly by DNA conformation. In DNA solutions saturated with N2O/O2, 8-hydroxypurine formation was more favourable in the heat-denatured conformation than in the native conformation. On the other hand, in deoxygenated solutions, formation of 8-hydroxypurines was favoured in the native conformation. Data indicate that DNA conformation and the type of gas used to saturate the irradiated solutions have a profound influence on yields of base products in DNA.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air
  • DNA / radiation effects*
  • Nitrogen
  • Nitrous Oxide
  • Nucleic Acid Conformation*
  • Oxygen
  • Purines*
  • Pyrimidinones*
  • Solutions
  • Water

Substances

  • Purines
  • Pyrimidinones
  • Solutions
  • Water
  • DNA
  • Nitrous Oxide
  • Nitrogen
  • Oxygen