Evaluation of arterial baroreflex in cardiovascular control is an important topic in cardiology and clinical medicine. In this paper, we present a point process approach to estimate the dynamic baroreflex gain in a closed-loop model of the cardiovascular system. Specifically, the inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is modulated by a bivariate autoregressive model that contains the previous R-R intervals and systolic blood pressure (SBP) measures. The instantaneous baroreflex gain is estimated in the feedback loop with a point process filter, while the RR→SBP feedforward frequency response gain can be estimated by a Kalman filter. The proposed estimation approach provides a quantitative assessment of interacting heartbeat dynamics and hemodynamics. We validate our approach with real physiological signals and evaluate the proposed model with established goodness-of-fit tests.