Filling-in, spatial summation, and radiation of pain: evidence for a neural population code in the nociceptive system

J Neurophysiol. 2009 Dec;102(6):3544-53. doi: 10.1152/jn.91350.2008. Epub 2009 Sep 16.

Abstract

The receptive field organization of nociceptive neurons suggests that noxious information may be encoded by population-based mechanisms. Electrophysiological evidence of population coding mechanisms has remained limited. However, psychophysical studies examining interactions between multiple noxious stimuli can provide indirect evidence that neuron population recruitment can contribute to both spatial and intensity-related percepts of pain. In the present study, pairs of thermal stimuli (35 degrees C/49 degrees C or 49 degrees C/49 degrees C) were delivered at different distances on the leg (0, 5, 10, 20, 40 cm) and abdomen (within and across dermatomes) and subjects evaluated pain intensity and perceived spatial attributes of stimuli. Reports of perceived pain spreading to involve areas that were not stimulated (radiation of pain) were most frequent at 5- and 10-cm distances (chi(2) = 34.107, P < 0.0001). Perceived connectivity between two noxious stimuli (filling-in) was influenced by the distance between stimuli (chi(2) = 16.756, P < 0.01), with the greatest connectivity reported at 5- and 10-cm separation distances. Spatial summation of pain occurred over probe separation distances as large as 40 cm and six dermatomes (P < 0.05), but was maximal at 5- and 10-cm separation distances. Taken together, all three of these phenomena suggest that interactions between recruited populations of neurons may support both spatial and intensity-related dimensions of the pain experience.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Abdomen / innervation
  • Adult
  • Afferent Pathways / physiopathology
  • Female
  • Humans
  • Leg / innervation
  • Male
  • Nociceptors / physiology*
  • Pain / classification
  • Pain / etiology*
  • Pain / pathology*
  • Pain Measurement / methods
  • Pain Threshold / physiology*
  • Physical Stimulation / adverse effects*
  • Psychophysics
  • Radiation
  • Reaction Time
  • Recruitment, Neurophysiological
  • Skin / innervation
  • Thermosensing / physiology
  • Young Adult