Itinerant ferromagnetism in a Fermi gas of ultracold atoms

Science. 2009 Sep 18;325(5947):1521-4. doi: 10.1126/science.1177112.

Abstract

Can a gas of spin-up and spin-down fermions become ferromagnetic because of repulsive interactions? We addressed this question, for which there is not yet a definitive theoretical answer, in an experiment with an ultracold two-component Fermi gas. The observation of nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data validate the most basic model for ferromagnetism introduced by Stoner.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.