Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 27;48(42):9994-10004.
doi: 10.1021/bi901402x.

Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation

Affiliations

Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation

Gabriel Svensson et al. Biochemistry. .

Abstract

Glypicans are cell-surface heparan sulfate proteoglycans that influence Wnt, hedgehog, decapentaplegic, and fibroblast growth factor activity via their heparan sulfate chains. However, recent studies have shown that glypican core proteins also have a role in growth factor signaling. Here, we expressed secreted recombinant human glypican-1 in eukaryotic cells. Recombinant glypican-1 was expressed as two glycoforms, one as proteoglycan substituted with heparan sulfate chains and one as the core protein devoid of glycosaminoglycans. Far-UV circular dichroism (CD) analysis of glypican-1 isolated under native conditions showed that the glypican-1 core protein is predominantly alpha-helical in structure, with identical spectra for the core protein and the proteoglycan form. The conformational stability of glypican-1 core protein to urea and guanidine hydrochloride denaturation was monitored by CD and fluorescence spectroscopy and showed a single unfolding transition at high concentrations of the denaturant (5.8 and 2.6 M, respectively). Renaturation from guanidine hydrochloride gave far-UV CD and fluorescence spectra identical to the spectra of native glypican-1. Thermal denaturation monitored by CD and differential scanning calorimetry (DSC) showed a single structural transition at a temperature of approximately 70 degrees C. Refolding of the heat-denatured glypican-1 core protein was dependent on protein concentration, suggesting that intermolecular interactions are involved in irreversible denaturation. However, refolding was concentration-independent for the proteoglycan form, suggesting that O-glycosylation protects the protein from irreversible aggregation. In summary, we have shown that the glypican-1 core protein is a stable alpha-helical protein and that the proteoglycan form of glypican-1 is protected from heat-induced aggregation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources