Bacteriogenic manganese oxides

Acc Chem Res. 2010 Jan 19;43(1):2-9. doi: 10.1021/ar800232a.

Abstract

Microorganisms control the redox cycling of manganese in the natural environment. Although the homogeneous oxidation of Mn(II) to form manganese oxide minerals is slow, solid MnO(2) is the stable form of manganese in the oxygenated portion of the biosphere. Diverse bacteria and fungi have evolved the ability to catalyze this process, producing the manganese oxides found in soils and sediments. Other bacteria have evolved to utilize MnO(2) as a terminal electron acceptor in respiration. This Account summarizes the properties of Mn oxides produced by bacteria (bacteriogenic MnO(2)) and our current thinking about the biochemical mechanisms of bacterial Mn(II) oxidation. According to X-ray absorption spectroscopy and X-ray scattering studies, the MnO(2) produced by bacteria consists of stacked hexagonal sheets of MnO(6) octahedra, but these particles are extremely small and have numerous structural defects, particularly cation vacancies. The defects provide coordination sites for binding exogenous metal ions, which can be adsorbed to a high loading. As a result, bacterial production of MnO(2) influences the bioavailability of these metals in the natural environment. Because of its high surface area and oxidizing power, bacteriogenic MnO(2) efficiently degrades biologically recalcitrant organic molecules to lower-molecular-mass compounds, spurring interest in using these properties in the bioremediation of xenobiotic organic compounds. Finally, bacteriogenic MnO(2) is reduced to soluble Mn(II) rapidly in the presence of exogenous ligands or sunlight. It can therefore help to regulate the bioavailability of Mn(II), which is known to protect organisms from superoxide radicals and is required to assemble the water-splitting complex in photosynthetic organisms. Bioinorganic chemists and microbiologists have long been interested in the biochemical mechanism of Mn(IV) oxide production. The reaction requires a two-electron oxidation of Mn(II), but genetic and biochemical evidence for several bacteria implicate multicopper oxidases (MCOs), which are only known to engage one-electron transfers from substrate to O(2). In experiments with the exosporium of a Mn(II)-oxidizing Bacillus species, we could trap the one-electron oxidation product, Mn(III), as a pyrophosphate complex in an oxygen-dependent reaction inhibited by azide, consistent with MCO catalysis. The Mn(III) pyrophosphate complex can further act as a substrate, reacting in the presence of the exosporium to produce Mn(IV) oxide. Although this process appears to be unprecedented in biology, it is reminiscent of the oxidation of Fe(II) to form Fe(2)O(3) in the ferritin iron storage protein. However, it includes a critical additional step of Mn(III) oxidation or disproportionation. We shall continue to investigate this biochemically unique process with purified enzymes.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adsorption
  • Amino Acid Sequence
  • Bacteria / metabolism*
  • Cations
  • Manganese Compounds / chemistry
  • Manganese Compounds / metabolism*
  • Molecular Sequence Data
  • Oxidation-Reduction
  • Oxides / chemistry
  • Oxides / metabolism*
  • Oxidoreductases / metabolism*
  • X-Ray Diffraction

Substances

  • Cations
  • Manganese Compounds
  • Oxides
  • manganese oxide
  • Oxidoreductases