Encoding properties of auditory neurons in the brain of a soniferous damselfish: response to simple tones and complex conspecific signals

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Nov;195(11):1071-88. doi: 10.1007/s00359-009-0480-1. Epub 2009 Sep 27.

Abstract

The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s(-1). Average best frequency for neurons to tone stimuli was approximately 130 Hz but ranged from 80 to 400 Hz with strong phase-locking. This low-frequency sensitivity matches the frequency band of natural sounds. Auditory neurons were also modulated by playbacks of conspecific sounds with thresholds similar to 100 Hz tones, but these thresholds were lower than that of tones at other test frequencies. Thresholds of neurons to natural sounds were lower in the midbrain than the hindbrain. This is the first study to compare response properties of auditory neurons to both simple tones and complex stimuli in the brain of a recently derived soniferous perciform that lacks accessory auditory structures. These data demonstrate that the auditory fish brain is most sensitive to the frequency and temporal components of natural pulsed sounds that provide important signals for conspecific communication.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acoustic Stimulation / methods
  • Action Potentials / physiology
  • Animals
  • Auditory Pathways / physiology
  • Auditory Perception / physiology
  • Auditory Threshold / physiology
  • Brain / cytology*
  • Female
  • Fishes / physiology*
  • Male
  • Psychoacoustics
  • Sensory Receptor Cells / physiology*